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Abstract In this paper, we are concerned with a fourth-order three point boundary
value problem. We prove the existence, uniqueness and positivity of solutions by
using Leray–Schauder nonlinear alternative, Banach contraction theorem and Guo–
Krasnosel’skii fixed point theorem.
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1 Introduction

The study of the existence of positive solutions for two-point, three-point and multi-
point boundary value problems for nonlinear ordinary differential equations has seen
a great importance in the recent years.

In fact, it has become an important area of investigation which has received a lot
of attentions due to the fact that it has yielded. For more information, one can see the
following references [1,4,6,7,9–11,17,19–21].

A. Guezane-Lakoud
Department of Mathematics, Faculty of Sciences, University Badji Mokhtar,
B.P. 12, 23000 Annaba, Algeria
e-mail: a_guezane@yahoo.fr

L. Zenkoufi (B)
Department of Mathematics, Faculty of Sciences, University 8 may 1945 Guelma,
B.P 401, 24000 Guelma, Algeria
e-mail: zenkoufi@yahoo.fr

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-014-0863-5&domain=pdf


www.manaraa.com

140 A. Guezane-Lakoud, L. Zenkoufi

The main concern of such a study is the description of the deformations of an
elastic beam by means of a fourth-order two-point boundary value problem, where
the boundary conditions are given according to the controls at the ends of the beam.
One can see here that many papers have been devoted to that problem; namely, the
fourth-order two-point boundary value problems.One can refer to the following studies
[3,13–15,17,18,22] for more precision.

In 2003,Ma [16]; for instance, described the deformations of an elastic beamwhose
one end was fixed where as the other one was free considering the fourth-order right
focal two-point boundary value problem as follows

u′′′′ = λ f
(
t, u (t) , u′ (t)

)
, t ∈ (0, 1)

u (0) = u′ (0) = u′′ (1) = u′′′ (1) .

Moreover, in 2011, Le and Phan [12] showed sufficient conditions for the existence
of positive solutions to a multi-point boundary value problem such as

u′′′′ = λ f (t, x (t)) , 0 < t < 1

x2k+1 (0) = 0, x2k (1) =
m−2∑

i=1

αki x
2k (

ηki
)
, k = 0, 1

bymaking use of theGuo–Krasnoselskii’s fixed point theorem aswell as themonotone
iterative technique. Where λ > 0, 0 < ηk1 < ηk2 . . . < ηkm−2 < 1 (k = 0, 1) and
where 1 < αi < 1

ηi
, i = 0, 1.

In 2006, Zhang, Lishan and Congxin [23], and in 2008, Zhang, Lishan [24]; have
studied the existence and uniqueness of nontrivial solutions for a third-order eigenvalue
problem generated by the differential equation

u′′′′ = λ f
(
t, u (t) , u′ (t)

)
, 0 < t < 1,

with respectively, the boundary conditions:

u (0) = u′ (η) = u′′ (0) = 0,

and

u (0) = u′ (η) = u′′ (1) = 0,

where λ > 0 is a parameter, 1
2 < η < 1 is a constant, f : [0, 1] × R × R → R is

continuous. Their approach is based on Leray–Schauder nonlinear alternative.
Thus, motivated by such papers, we shall study the existence of positive solutions

of the following three-point boundary value problem:

u′′′′ (t) + f
(
t, u (t) , u′ (t) , u′′ (t)

) = 0, t ∈ (0, 1) , (1.1)

u (0) = u′ (0) = u′′ (0) = 0, u′′ (1) = βu′′ (η) , (1.2)
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where f ∈ C([0, 1] × R
3, R), β > 0, 0 < η < 1.

Moreover, we shall also make use of Leray–Schauder nonlinear alternative, The
Banach contraction theorem and Guo–Krasnoselskii’s fixed point theorem.

The organization of this paper is structured as follows:
Section 2: Presents some preliminaries that are used to prove our results.
Section 3: Discusses the existence and the uniqueness of the solution for the BVP

(1.1)–(1.2), by using Leray–Schauder nonlinear alternative as well as Banach contrac-
tion theorem.

Section 4: Studies the positivity of the solution applying the Guo–Krasnosel’skii
fixed point theorem.

Section 5: Gives some examples to illustrate the results obtained.
The assumptions we make throughout this paper are as follows :
β ∈ R

∗+, 0 < η < 1 and f ∈ C([0, 1] × R
3, R).

We consider the Banach space X = C2 [0, 1], equipped with the norm ‖u‖X =
max

{‖u‖∞ ,
∥∥u′∥∥∞ ,

∥∥u′′∥∥∞
}
, where ‖u‖∞ = max

t∈[0,1] |u (t)|.

2 Preliminary Lemmas

In this section, we present several important preliminary lemmas.

Lemma 1 Let βη �= 1 and y ∈ L1 [0, 1] . Then, the problem

u′′′′ + y (t) = 0, 0 < t < 1, (2.1)

u (0) = u′ (0) = u′′ (0) = 0, u′′ (1) = βu′′ (η) , (2.2)

has a unique solution that is

u (t) =
∫ 1

0
G (t, s) y (s) ds + βt3

6 (1 − βη)

∫ 1

0
G∗ (η, s) y (s) ds, (2.3)

where

G (t, s) = 1

6

{
(1 − s) t3 − (t − s)3 , 0 ≤ s ≤ t ≤ 1,

(1 − s) t3, 0 ≤ t ≤ s ≤ 1,
(2.4)

∂G (t, s)

∂t
= 1

2

{
(1 − s) t2 − (t − s)2 , 0 ≤ s ≤ t ≤ 1,

(1 − s) t2, 0 ≤ t ≤ s ≤ 1,
(2.5)

G∗ (t, s) = ∂2G (t, s)

∂t2
=

{
(1 − t) s, 0 ≤ s ≤ t ≤ 1,
(1 − s) t, 0 ≤ t ≤ s ≤ 1.

(2.5’)

Proof By integrating the equation (2.1) over the interval [0, t] for t ∈ [0, 1] , we get

u (t) = −1

6

∫ t

0
(t − s)3 y (s) ds + 1

6
C1t

3 + 1

2
C2t

2 + C3t + C4. (2.6)
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By the boundary conditions: u (0) = u′ (0) = u′′ (0) = 0, we get: C4 = C3 =
C2 = 0.

And from u′′ (1) = βu′′ (η) , we deduce

C1 = 1

1 − βη

∫ 1

0
(1 − s) y (s) ds − β

1 − βη

∫ η

0
(η − s) y (s) ds.

Substituting C1, C2, C3 and C4 in (2.6), we obtain

u (t) = 1

6

(
−

∫ t

0
(t − s)3 y (s) ds + t3

∫ t

0
(1 − s) y (s) ds

)

+ t3

6

∫ 1

t
(1 − s) y (s) ds

+ βt3

6 (1 − βη)

(
η

∫ η

0
(1 − s) y (s) ds + η

∫ 1

η

(1 − s) y (s) ds

)

− βt3

6 (1 − βη)

∫ η

0
(η − s) y (s) ds.

Thus, by means of elementary operations we get

u (t) =
∫ 1

0
G (t, s) y (s) ds

+ βt3

6 (1 − βη)

∫ 1

0
G∗ (η, s) y (s) ds.

Which implies Lemma 1. 
�
We conclude, that in order to discuss the existence of positive solutions, we need

some properties of function G (t, s) .

Lemma 2 The function G and its first and second derivatives are nonnegative and
for t, s ∈ [0, 1], we have

(i) 0 ≤ G (t, s) ≤ 2G1 (s) ,

(i i) 0 ≤ ∂

∂t
G (t, s) ≤ G1 (s) ,

(i i i) 0 ≤ G∗ (t, s) ≤ 2G1 (s) ,

where G1 (s) = 1
2 (1 − s) s.

Proof (i) Let t, s ∈ [0, 1] . If s ≤ t, it follows from (2.4) that

G (t, s) = 1

6

[
(1 − s) t3 − (t − s)3

]

≤ 1

6
s
[
t2 (1 − s) + 3t (t − s)

]

≤ s (1 − s) = 2G1 (s) .
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If t ≤ s, then

G (t, s) = 1

6
(1 − s) t3 ≤ 1

6
(1 − s) s3 ≤ (1 − s) s = 2G1 (s) .

Therefore,

0 ≤ G (t, s) ≤ 2G1 (s) , ∀ (t, s) ∈ [0, 1] × [0, 1] .

(ii) Let t, s ∈ [0, 1]. If s ≤ t, it follows from (2.5) that

∂

∂t
G (t, s) = 1

2

[
(1 − s) t2 − (t − s)2

]
= 1

2

[
1 − s − (1 − t)2

]
s ≥ 0,

∂

∂t
G (t, s) ≤ 1

2
(1 − s) s = G1 (s) .

If t ≤ s, it yields

∂

∂t
G (t, s) = 1

2
t2 (1 − s) ≤ 1

2
(1 − s) s = G1 (s) .

Consequently,

0 ≤ ∂

∂t
G (t, s) ≤ G1 (s) , ∀ (t, s) ∈ [0, 1] × [0, 1] .

(iii) If t ≤ s, then G∗ (t, s) = (1 − s) t ≤ (1 − s) s = 2G1 (s) .

In the case s ≤ t, we get G∗ (t, s) = (1 − t) s ≤ (1 − s) s = 2G1 (s) .

This completes the proof of Lemma 2. 
�
Define an operator T : X −→ X by

Tu (t) =
∫ 1

0
G (t, s) f

(
s, u (s) , u′ (s) , u′′ (s)

)
ds

+ βt3

6 (1 − βη)

∫ 1

0
G∗ (η, s) f

(
s, u (s) , u′ (s) , u′′ (s)

)
ds. (2.7)

The function u ∈ X is a solution of the BV P (1.1)–(1.2) if and only if Tu (t) = u(t).

3 Existence Results

Now we give some existence results for the BV P (1.1)–(1.2).

Theorem 3 Assume that βη �= 1 and there exists nonnegative functions k, h, l ∈
L1 ([0, 1] , R+) , such that:

| f (t, x, y, z) − f (t, u, v, w)| ≤ k (t) |x − u| + h (t) |y − v| + l (t) |z − w| ,
∀x, y, z, u, v, w ∈ R, t ∈ [0, 1] , (3.1)
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and

C = 2

(
1 + β

|1 − βη|
)∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds < 1, (3.2)

then, the BV P (1.1)–(1.2) has a unique solution in X.

Proof We shall prove that T is a contraction. Let u, v ∈ X, then

|Tu (t) − T v (t)| ≤ 2
∫ 1

0
G1 (s)

∣∣ f
(
s, u (s) , u′ (s) , u′′ (s)

)

− f
(
s, v (s) , v′ (s) , v′′ (s)

)∣∣ ds

+ β

3 |1 − βη|
∫ 1

0
G1 (s)

∣∣ f
(
s, u (s) , u′ (s) , u′′ (s)

)

− f
(
s, v (s) , v′ (s) , v′′ (s)

)∣∣ ds.

By (3.1), we can reach the following result:

|Tu (t) − T v (t)| ≤
(
2 + β

3 |1 − βη|
)

×
∫ 1

0
G1 (s)

[
k (s) |u (s) − v (s)| + h (s)

∣∣u′ (s) − v′ (s)
∣∣ + l (s)

∣∣u′′ (s) − v′′ (s)
∣∣] ds,

then

|Tu (t) − T v (t)| ≤ ‖u − v‖X
(
2 + β

|1 − βη|
)∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds.

Similarly, we get

∣∣T ′u (t)−T ′v (t)
∣∣≤ ‖u − v‖X

(
1 + β

|1 − βη|
)∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds,

and

∣∣T ′′u (t)−T ′′v (t)
∣∣≤ 2 ‖u − v‖X

(
1+ β

|1−βη|
) ∫ 1

0
G1 (s) (k (s)+h (s) + l (s)) ds,

thanks to (3.2), we get

‖Tu − T v‖X ≤ C ‖u − v‖X ,

then, T is a contraction, so it has a unique fixed point which is the unique solution of
BVP (1.1)–(1.2). 
�
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Theorem 4 Assume that βη �= 1, f (t, 0, 0, 0) �= 0 and there exists some nonnega-
tive functions k, l, h,m ∈ L1 [0, 1] such that

| f (t, u, v, w)| ≤ k (t) |u| +h (t) |v| +l (t) |w| +m (t) ,∀u, v, w ∈ R, t ∈ [0, 1] ,

(3.3)

2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds < 1. (3.4)

Then, the BVP (1.1)–(1.2) has at least one nontrivial solution u∗ ∈ X.

We need the following Lemma:

Lemma 5 (Leray-Schauder nonlinear alternative [5]) Let F be a Banach space and
� a bounded open subset of F, 0 ∈ �. T : � → F is a completely continuous
operator. Then, either it exists x ∈ ∂�, λ > 1 such that T (x) = λx, or it exists a fixed
point x∗ ∈ �.

Proof of Theorem 4. Setting

F = 2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds,

G = 2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s)m (s) ds.

However, to reach these results, we need to show that T is a completely continuous
operator:

1) T continuous. Let (uk)k∈N be a convergent sequence to u in X . By applying the
upper bounds of the functionG and of its first and second derivatives from Lemma
2, we get

|Tuk (t) − Tu (t)| ≤
(
2 + β

|1 − βη|
)

×
∫ 1

0
G1 (s)

∣∣ f
(
s, uk (s) , u′

k (s) , u′′
k (s)

) − f
(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ ds,

∣∣T ′uk (t) − T ′u (t)
∣∣ ≤

(
1 + β

|1 − βη|
)

×
∫ 1

0
G1 (s)

∣∣ f
(
s, uk (s) , u′

k (s) , u′′
k (s)

) − f
(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ ds,

and

∣
∣T ′′uk (t) − T ′′u (t)

∣
∣ ≤ 2

(
1 + β

|1 − βη|
)

×
∫ 1

0
G1 (s)

∣∣ f
(
s, uk (s) , u′

k (s) , u′′
k (s)

) − f
(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ ds,

123



www.manaraa.com

146 A. Guezane-Lakoud, L. Zenkoufi

which imply,

‖Tuk − Tu‖X ≤ 2

(
1 + β

|1 − βη|
)

×
∫ 1

0
G1 (s)

∣
∣ f

(
s, uk (s) , u′

k (s) , u′′
k (s)

) − f
(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ ds,

since G1 (s) ≤ 1
8 then

‖Tuk − Tu‖X ≤ 1

4

(
1 + β

|1 − βη|
)

×
∫ 1

0

∣∣ f
(
s, uk (s) , u′

k (s) , u′′
k (s)

) − f
(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ ds,

applying Lebesgue’s dominated convergence theorem it yields ‖Tuk − Tu‖X →
0, when k → +∞. This implies that T is continuous.

2) Let Br = {u ∈ X : ‖u‖X ≤ r} a bounded subset. We shall prove that T (Br ) is
relatively compact:

(i) T (Br ) uniformly bounded. For some u ∈ Br , using (3.3) we obtain

|Tu (t)| ≤
(
2 + β

|1 − βη|
)

‖u‖X
∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds

+
(
2 + β

|1 − βη|
)∫ 1

0
G1 (s)m (s) ds.

Similarly, we have

∣∣T ′u (t)
∣∣ ≤

(
1 + β

|1 − βη|
)

‖u‖X
∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds

+
(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s)m (s) ds.

And,

∣∣T ′′u (t)
∣∣ ≤ 2

(
1 + β

|1 − βη|
)

‖u‖X
∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds

+2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s)m (s) ds.

From the above inequalities we have ‖Tu‖X ≤ F ‖u‖X + G ≤ Fr + G. Thus,
T (Br ) is uniformly bounded.
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(ii) T (Br ) equicontinuous. Let t1, t2 ∈ [0, 1] , u ∈ Br ,

L = max
{∣∣ f

(
s, u (s) , u′ (s) , u′′ (s)

)∣∣ , s ∈ [0, 1] , ‖u‖X ≤ r
}
,

therefore, we have:

|Tu (t1) − Tu (t2)| ≤ L |t2 − t1|[∣
∣∣∣t1

(
3 + t1

2

)
(t1 + t2) + t1

2

(
t21 + t22 + t1t2

)∣
∣∣∣

+
(
t21 + t22 + t1t2

)
β

6 |1 − βη|
∫ 1

0

∣∣G∗ (η, s)
∣∣ ds

]

.

Similarly, we have

∣∣T ′u (t1) − T ′u (t2)
∣∣≤ L |t2 − t1|

[
1 − t22 + t1 (t1 − t2 + 3) + (t1 + t2) β

2 |1 − βη|
∫ 1

0

∣∣G∗ (η, s)
∣∣ ds

]
.

We also have:

∣∣T ′′u (t1) − T ′′u (t2)
∣∣ ≤L |t2 − t1|

[
1 + (t1 − t2) + 1

2
(3t2 − 5t1) + β

|1 − βη|
∫ 1

0

∣∣G∗ (η, s)
∣∣ ds

]
.

These show that, |Tu (t1) − Tu (t2)| −→
t1→t2

0,
∣∣T ′u (t1) − T ′u (t2)

∣∣ −→
t1→t2

0 and
∣∣T ′′u (t1) − T ′′u (t2)

∣∣ −→
t1→t2

0. Consequently, T (Br ) is equicontinuous. From

Arzela-Ascoli theorem, we deduce that T is a completely continuous operator.


�

Proof Now, from the continuity of f and the fact that f (t, 0, 0, 0) �= 0, we conclude
that there exists an interval [σ1, σ2] ⊂ [0, 1] such that min

σ1≤t≤σ1
| f (t, 0, 0, 0)| > 0 and

then G > 0 since m (t) ≥ | f (t, 0, 0, 0)| > 0 on [σ1, σ2] . Let M = G (1 − F)−1 ,

� = {u ∈ X : ‖u‖ < M} and u ∈ ∂�, λ > 1 such that Tu = λu, then with the help
of (3.3) it yields

|Tu (t)| ≤ ‖u‖X
(
2 + β

|1 − βη|
)∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds

+
(
2 + β

|1 − βη|
) ∫ 1

0
G1 (s)m (s) ds.
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Moreover,

∣∣T ′u (t)
∣∣ ≤ ‖u‖X

(
1 + β

|1 − βη|
)∫ 1

0
G1 (s) |(k (s) + h (s) + l (s))| ds

+
(
1 + β

|1 − βη|
)∫ 1

0
G1 (s)m (s) ds.

And,

∣
∣T ′′u (t)

∣
∣ ≤ 2 ‖u‖X

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s) |(k (s) + h (s) + l (s))| ds

+2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s)m (s) ds.

This shows that

λM = ‖Tu‖X ≤ F ||u||X + G = FM + G.

From this we get

λ ≤ F + G

M
= F + G

G (1 − F)−1 = F + (1 − F) = 1.

However, this contradicts λ > 1. By applying Lemma 5, we deduce that T has a
fixed point u∗ ∈ � and so, the BVP (1.1)–(1.2) has a nontrivial solution u∗ ∈ X.

Consequently, the proof is complete.

4 Positive Results

In this section, we shall discuss the existence of positive solutions of BVP (1.1)–(1.2).
By making the following additional assumptions:

(Q1) f (t, u, v, w) = a(t) f1(u, v, w) where a ∈ C([0, 1] , R+) and f1 ∈ C(R ×
R
2, R+).

(Q2)
∫ 1
0 G1 (s) a(s)ds > 0.

In fact, we need the lower bounds of functions G and its derivatives.

Lemma 6 Let t ∈ [τ1, τ2], s ∈ [0, 1], 0 < τ1 < τ2 < 1, then

i) G (t, s) ≥ 1

3
τ 31G1 (s) ,

i i)
∂

∂t
G (t, s) ≥ τ 21G1 (s) ,

i i i) G∗ (t, s) ≥ γG1 (s) ,

where γ = min
{
2τ 21 , 2 (1 − τ2)

}
.
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Proof i) If s ≤ t, then

G (t, s) ≥ 1

6
s (1 − s) t3 + 1

6
t3 (1 − s)3 − 1

6
(t − s)3 ,

G (t, s) ≥1

6
s (1−s) t3+ 1

6
s (1−t)

[
t2 (1−s)2+t (1 − s) (t − s) + (t − s)3

]
,

G (t, s) ≥ 1

6
s (1 − s) t3 ≥ 1

3
τ 31G1 (s) .

If t ≤ s, it follows that

G (t, s) = 1

6
(1 − s) t3 ≥ 1

6
s (1 − s) t3 ≥ 1

3
τ 31G1 (s) .

ii) If s ≤ t, then

∂

∂t
G (t, s) = 1

2

(
2t − t2 − s

)
s

= 1

2
st2 (1 − s) + 1

2
(1 − t) [(t − s) + (1 − s) t] s.

Thus,

∂

∂t
G (t, s) ≥ 1

2
t2 (1 − s) s ≥ τ 21G1 (s) .

Now in the case t ≤ s, we get

∂

∂t
G (t, s) = 1

2
t2 (1 − s) ≥ 1

2
t2 (1 − s) s ≥ τ 21G1 (s) .

iii) If t ≤ s, then

G∗ (t, s) = (1 − s) t = (1 − s) s
t

s
≥ (1 − s) sτ1 ≥ 2τ 21G1 (s) .

In the case s ≤ t, it yields

G∗ (t, s) = (1 − t) s = 1 − t

1 − s
(1 − s) s ≥

(1 − τ2) (1 − s) s ≥ 2 (1 − τ2)G1 (s) ,

from here we conclude that G∗ (t, s) ≥ γG1 (s) on [τ1, τ2] × [0, 1] . This com-
pletes the proof. 
�

Lemma 7 Under the assumptions (Q1)–(Q2) and if 0 < βη < 1 and if u is a solution
of the BVP (1.1)–(1.2) then u is nonnegative and satisfies

min
t∈[τ1,τ2]

(
u (t) + u′ (t) + u′′ (t)

) ≥ λ
[
2

(
1 + β

1−βη

)]−1 ||u||X ,
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where λ = min
{
γ, τ 21 , 1

3τ
3
1

}
.

Proof Let u be a solution of the BVP (1.1)–(1.2), then

u (t) = Tu (t) =
∫ 1

0
G (t, s) a (s) f1

(
u (s) , u′ (s) , u′′ (s)

)
ds

+ βt3

6 (1 − βη)

∫ 1

0
G∗ (η, s) a (s) f1

(
u (s) , u′ (s) , u′′ (s)

)
ds.

From the assumptions (Q1)–(Q2) and the positivity of G and G∗, it is obvious that u
is nonnegative. Now using Lemma 2 we get

‖u‖∞ ≤
(
2 + β

1 − βη

) ∫ 1

0
G1 (s) a (s) f1

(
u (s) , u′ (s) , u′′ (s)

)
ds.

On the other hand, for any t ∈ [τ1, τ2] by Lemma 6, we get

u (t) ≥ 1

3
τ 31

(
2 + β

1 − βη

)−1

‖u‖∞ .

Therefore, we have:

min
t∈[τ1,τ2]

u (t) ≥ 1

3
τ 31

(
2 + β

1 − βη

)−1

‖u‖∞ .

Similarly, for any t ∈ [τ1, τ2] , we get

min
t∈[τ1,τ2]

u′ (t) ≥ τ 21

(
1 + β

1 − βη

)−1 ∣
∣
∣
∣u′∣∣∣∣∞ .

And

min
t∈[τ1,τ2]

u′′ (t) ≥ γ

2

(
1 + β

1 − βη

)−1 ∣∣∣∣u′′∣∣∣∣∞ .

Finally we get:

min
t∈[τ1,τ2]

(
u (t) + u′ (t) + u′′ (t)

) ≥ λ

[
2

(
1 + β

1 − βη

)]−1

||u||X .

This finishes the proof. 
�

Define the set K by
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K =
{
u ∈ X, u (t) ≥ 0, t ∈ [0, 1], min

t∈[τ1,τ2]
(
u (t) + u′ (t) + u′′ (t)

)

≥ λ

[
2

(
1 + β

1 − βη

)]−1

||u||X
}

.

We prove easily that K is a non-empty closed and convex subset of X, then it is a
cone.

Lemma 8 The operator T is completely continuous and satisfies T (K ) ⊆ K .

Proof To prove that it suffices to apply Arzela-Ascoli theorem, and following the
proof of Lemma 7, one can show that T (K ) ⊂ K . 
�

To establish the existence of positive solutions of BVP (1.1)–(1.2), we shall employ
the following Guo–Krasnosel’skii fixed point theorem [8].

Theorem 9 Let E be aBanach space and let K ⊂ E be a cone.Weassume that�1,�2
are open subsets of E with 0 ∈ �1, �1 ⊂ �2, and let A : K ∩ (

�2\�1
) → K be a

completely continuous operator. In addition, we suppose either

(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂�1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂�2 or
(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂�1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂�2

holds. Then A has a fixed point in K ∩ (
�2\�1

)
.

The main result of this section is the following:

Theorem 10 Under the assumptions (Q1) and (Q2) and if 0 < βη < 1, f0 = 0
and f∞ = ∞. Then, the BVP (1.1)–(1.2) has at least one nontrivial positive solution.
Where

f0 = lim
(|u|+|v|+|w|)→0

f1 (u, v, w)

|u| + |v| + |w| ,

f∞ = lim
(|u|+|v|+|w|)→∞

f1 (u, v, w)

|u| + |v| + |w| .

Proof We shall prove that the problem BVP (1.1)–(1.2) has at least one positive
solution. For this we use Theorem 9. From Lemma 8 we know that T is completely
continuous and that T

(
K ∩ (

�2\�1
)) ⊂ K . Now, since f0 = 0, then for any ε > 0,

there exists δ1 > 0, such that f1 (u, v, w) ≤ ε (|u| + |v| + |w|) , for |u|+ |v|+ |w| <

δ1. Let �1 be an open set in X defined by�1 = {
y ∈ X/ ||y||X < δ1

}
. Then, for any

u ∈ K ∩ ∂�1, it yields:

‖Tu‖∞ ≤ ε ‖u‖X
(
2 + β

1 − βη

) ∫ 1

0
G1 (s) a (s) ds,
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and

∥∥T ′u
∥∥∞ ≤ ε ‖u‖X

(
1 + β

1 − βη

)∫ 1

0
G1 (s) a (s) ds.

And

∥∥T ′′u
∥∥∞ ≤ 2ε ‖u‖X

(
1 + β

1 − βη

)∫ 1

0
G1 (s) a (s) ds.

If we choose ε =
[
2

(
1 + β

1−βη

) ∫ 1
0 G1 (s) a (s) ds

]−1
, then it yields

‖Tu‖X ≤ ‖u‖X , ∀u ∈ K ∩ ∂�1.

Now, from f∞ = ∞, we conclude that for any M > 0, there exists H > 0, such that
f1 (u, v, w) ≥ M (|u| + |v| + |w|) for |u| + |v| + |w| ≥ H . Let

H1 = max

{
2δ1,

2H

λ

(
1 + β

1 − βη

)}
,

and denote by �2 the open set �2 = {
y ∈ X/ ‖y‖X < H1

}
, then �1 ⊂ �2. Let

u ∈ K ∩ ∂�2; then,

min
t∈[τ1,τ2]

{
u (t) + u′ (t) + u′′ (t)

} ≥ λ

[
2

(
1 + β

1 − βη

)]−1

‖u‖X

= λ

[
2

(
1 + β

1 − βη

)]−1

H1 ≥ H.

Now let t ∈ [τ1, τ2], taking into account Lemma 6, we obtain

Tu (t) ≥ M
λ2

2

(
1 + β

1 − βη

)−1 (
1 + γβ

2 (1 − βη)

)
‖u‖X

∫ τ2

τ1

G1 (s) a (s) ds.

Similarly,

T ′u (t) ≥ M
λ2

2

(
1 + β

1 − βη

)−1 (
1 + γβ

2 (1 − βη)

)
‖u‖X

∫ τ2

τ1

G1 (s) a (s) ds.

And

T ′′u (t) ≥ M
λ2

2

(
1 + β

1 − βη

)−1 (
1 + τ1β

2 (1 − βη)

)
‖u‖X

∫ τ2

τ1

G1 (s) a (s) ds.
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By choosing

M =
[

λ2

2

(
1 + β

1 − βη

)−1 (
1 + ζβ

2 (1 − βη)

) ∫ τ2

τ1

G1 (s) a (s) ds

]−1

,

where ζ = min (γ, τ1) we get:

‖Tu‖X ≥ ‖u‖X ,∀u ∈ K ∩ ∂�2

By the first part of Theorem 9, T has at least one fixed point in K ∩(
�̄2��1

)
, which is

a nontrivial positive solution of BVP (1.1)–(1.2). This achieves the proof of Theorem
10. 
�

5 Examples

In order to illustrate our results, we give these examples:

Example 11 We consider the following boundary value problem

{
u′′′′ + tu + t2u′ + t3u′′ = 0, 0 < t < 1,
u (0) = u′ (0) = u′′ (0) = 0, u′′ (1) = βu′′ (η) .

(J1)

We set β = 1
3 , η = 1

4 , and f (t, u, v, w) = tu + t2v + t3w. We can choose

k (t) = t, h (t) = t2, l (t) = t3, t ∈ [0, 1]

k, h , l ∈ L1 [0, 1] are nonnegative functions, and

| f (t, x, y, z) − f (t, u, v, z)| ≤ t |x − u| + t2 |y − v| + t3 |z − w|
≤ k (t) |x − u| + h (t) |y − v| + l (t) |z − w|

with,

C = 2

(
1 + β

|1 − βη|
) ∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds = 0.227 < 1,

hence, by Theorem 3, the boundary value problem (J1) has a unique solution in X.

Example 12 We consider the following boundary value problem

{
u′′′′ + 2tu + t2u′ sin t + t3

3 u
′′ + sin 2t = 0, 0 < t < 1,

u (0) = u′ (0) = u′′ (0) = 0, u′′ (1) = βu′′ (η) .
(J2)
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We set β = 1
2 , η = 1

4 . Now if we estimate f as

| f (t, u, v, w)| ≤ 2t |u| + t2 |v| + t3

3
|w| + sin 2t

≤ k (t) |u| + h (t) |v| + l (t) |w| + m (t) ,

then, we can choose k (t)=2t, l (t)= t2, h (t)= t3
3 , m (t)=sin 2t, t ∈ [0, 1]

with

2

(
1 + β

|1 − βη|
)∫ 1

0
G1 (s) (k (s) + h (s) + l (s)) ds = 0.357 94 < 1,

k, l, h and m ∈ L1 [0, 1] which are nonnegative functions. Hence, by Theorem 4,
the boundary value problem (J2) has at least one nontrivial solution, u∗ ∈ X.

Example 13 We consider the following boundary value problem

{
u′′′′ + t2u2 + t2

4

(
u′)2 + t2

9

(
u′′)2 = 0, 0 < t < 1,

u (0) = u′ (0) = u′′ (0) = 0, u′′ (1) = βu′′ (η) .
(J3)

where 0 < βη < 1. Knowing that:

f (t, u, v, w) = t2
(
u2 + 1

4
v2 + 1

9
w2

)
= a (t) f1 (u, v, w) ,

a (t) = t2 ∈ C ([0, 1] , R+) , f1 (u, v, w) ∈ C
(
R+ × R

2, R+
)
, we get

lim
f1 (u, v, w)

|u| + |v| + |w| =
{

0, if (|u| + |v| + |w|) → 0,
∞, if (|u| + |v| + |w|) → ∞.

So, we have the superlinear case f0 = 0 and f∞ = ∞; consequently, by Theorem
10, the BVP (J3) has at least one positive solution.
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