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Abstract In this paper, we are concerned with a fourth-order three point boundary
value problem. We prove the existence, uniqueness and positivity of solutions by
using Leray—Schauder nonlinear alternative, Banach contraction theorem and Guo-—
Krasnosel’skii fixed point theorem.
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1 Introduction

The study of the existence of positive solutions for two-point, three-point and multi-
point boundary value problems for nonlinear ordinary differential equations has seen
a great importance in the recent years.

In fact, it has become an important area of investigation which has received a lot
of attentions due to the fact that it has yielded. For more information, one can see the
following references [1,4,6,7,9-11,17,19-21].
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The main concern of such a study is the description of the deformations of an
elastic beam by means of a fourth-order two-point boundary value problem, where
the boundary conditions are given according to the controls at the ends of the beam.
One can see here that many papers have been devoted to that problem; namely, the
fourth-order two-point boundary value problems. One can refer to the following studies
[3,13-15,17,18,22] for more precision.

In 2003, Ma [16]; for instance, described the deformations of an elastic beam whose
one end was fixed where as the other one was free considering the fourth-order right
focal two-point boundary value problem as follows

W =Af (tu@),u' (1), 1€,
wu@ =u O =u"1)=u"Q).

Moreover, in 2011, Le and Phan [12] showed sufficient conditions for the existence
of positive solutions to a multi-point boundary value problem such as

W =af t,x(@), O0<t<l
m—2

PO =0, W)=Y wx™ (). k=01
i=1

by making use of the Guo—Krasnoselskii’s fixed point theorem as well as the monotone
iterative technique. Where A > 0, 0 < nx1 < mk2... < Nkm—2 < 1 (k=0,1) and
where 1 < a; < i_,i=0,1.

In 2006, Zhangl, Lishan and Congxin [23], and in 2008, Zhang, Lishan [24]; have
studied the existence and uniqueness of nontrivial solutions for a third-order eigenvalue
problem generated by the differential equation

u” =Arf (t,u @), u’(t)), 0<t<l,

with respectively, the boundary conditions:

u(0)=u'"(n) =u"(0)=0,
and

u(0) =u"(m) =u"(1)=0,
where A > 0 is a parameter, % <n<lisaconstant, f : [0,1] x Rx R — Ris
continuous. Their approach is based on Leray—Schauder nonlinear alternative.

Thus, motivated by such papers, we shall study the existence of positive solutions

of the following three-point boundary value problem:

u" () + f(tu@) u' (1), u” 1) =0, te1), (1.1)

0, u"(1)=pu"®m, (1.2)
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where f € C([0, 1] xR3,R), 8>0,0<1n < 1.

Moreover, we shall also make use of Leray—Schauder nonlinear alternative, The

Banach contraction theorem and Guo—Krasnoselskii’s fixed point theorem.

The organization of this paper is structured as follows:

Section 2: Presents some preliminaries that are used to prove our results.

Section 3: Discusses the existence and the uniqueness of the solution for the BVP
(1.1)—(1.2), by using Leray—Schauder nonlinear alternative as well as Banach contrac-

tion theorem.

Section 4: Studies the positivity of the solution applying the Guo—Krasnosel’skii

fixed point theorem.
Section 5: Gives some examples to illustrate the results obtained.
The assumptions we make throughout this paper are as follows :
BeR*, 0<n<land feC(0,1] x R} R).

We consider the Banach space X = C 210, 11, equipped with the norm |lul|y =

max {[|ull o »

W oo lu” | o} > where llulloe = Jax, lu (1)).

2 Preliminary Lemmas

In this section, we present several important preliminary lemmas.

Lemma 1 Let 8 # 1 and y € L' [0, 1]. Then, the problem

uW” +y@t) =0, 0<t<l,
u© =u"(0)=u"0)=0, u"(1)=pBu" (),

has a unique solution that is

1 ﬂt3 1 .
u(t):/0 G(t,s)y(s)ds+m/0 G*(n,8)y(s)ds,

where

(=P —@—-9°, 0<s<t<I,
G@.s5) = I (1—-9713, 0<r<s<]l,

1
6
0G@s) 1[d-5rr—@—s? 0=<s=<t=],
a2 (1-5)1?, 0<t=<s<I,

* —
G (t,5) = T ld=-5t 0<t<s<l.

3%G (1, 5) _[(l—t)s, 0<s<rt<l,
912

2.1)
(2.2)

2.3)

(2.4)

2.5)

(2.5)

Proof By integrating the equation (2.1) over the interval [0, ¢] for t € [0, 1], we get

t

6

(I RN
—Cqt +§C2t + Cst + Cy.

(2.6)
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By the boundary conditions: u (0) = u’ (0) = u” (0) = 0, we get: C4 = C3 =
C, =0.
And from u” (1) = Bu” (1) , we deduce

C =

Substituting C1, C,, C3 and Cy4 in (2.6), we obtain

u(t) = ( /(t—s)3y(s)ds+t / (l—s)y(s)ds)

+€/t (1=s5)y(s)ds

ﬂt?’ 1
-_— 1-— d 1- d
6(1—ﬂn)( / (I =s5)y(s) S+77/ (I =s5)y(s) S)

—m/o (n—s)y(s)ds.

Thus, by means of elementary operations we get
1
u(t) =/ G(t,s)y(s)ds
0

6(1—,3 )/ G* (. 5)y (s)ds.

Which implies Lemma 1. O

We conclude, that in order to discuss the existence of positive solutions, we need
some properties of function G (¢, s) .

Lemma 2 The function G and its first and second derivatives are nonnegative and
fort,s € [0, 1], we have

(i) 0=G(t,5) <2Gi(s),
9
(i) 0< EG(t,s) <G (),
(iii) 0<G*(t,5) <2G1(s),
where G (s) = 3 (1 —s)s.
Proof (i) Lett,s € [0, 1].If s <1, it follows from (2.4) that
_ 1 3 3
Gt s) = 6[(1—s)t — (- ]

< ls 12(1—s)+3t(t—s)]
s) =2G1(s).
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If + <, then
1 3 1 3
G(t,s):a(l—s)t Sg(l—s)s <1 —-s5)s=2G1(s).
Therefore,
0=<G(ts) <2G1(s), VY(,s)€[0,1]x[0,1].

(ii) Letz,s € [0, 1]. If s < ¢, it follows from (2.5) that

%G(t,s):%[ 1—s)t2—(t—s)2]=%[l—s—(l—t)z]szo,

B 1
EG(t,s)fi(l—S)s=G1(S)-
Ift <, ityields
3G(t )—1t2(1 )<1(1 )s =Gi(s)
TaA
Consequently,
9
OSaG(t,s)SGl(S), V() e[0,1] x [0, 1].
(i) If 1 <'s, then G*(1,5) = (1 = 5)1 < (1 —5)s =2G1 (s).

Inthecases <t,weget G*(t,s) = (1 —1)s < (1 —s5)s =2G (s).
This completes the proof of Lemma 2. O

Define an operator 7 : X —> X by

1
Tu (1) =/ G(t,s) f(s.u(s),u' (s),u" (s))ds
0

pr3
Tsa—pn Jo

The function u € X is a solution of the BV P (1.1)—(1.2) if and only if Tu (¢) = u(t).

1
G*(n,s) f (s,u(s),u' (s),u" (s))ds. (2.7)

3 Existence Results

Now we give some existence results for the BV P (1.1)—(1.2).

Theorem 3 Assume that fn # 1 and there exists nonnegative functions k, h,l €
L' ([0, 1], Ry) , such that:

3.1
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and

B
[T — Bnl

1
C=2(1+ )/ Gi(s)(k(s)+h(s)+1(s)ds <1,  (3.2)
0

then, the BV P (1.1)—(1.2) has a unique solution in X.

Proof We shall prove that T is a contraction. Let u, v € X, then

1
[Tu () —Tv (@)= 2/0 G (s) ‘f (s,u(s),u'(s),u” (s))
—f(s,0(), V' (), 0" ()| ds
1
P /0 G ()| f (ssuls).u' (s),u"(5))

31— pnl
—f (s, 0(), 0" (), 0" ()| ds.

+

By (3.1), we can reach the following result:

Tuw - oo = (24 5755

1
/0 G () [k (s) [u(s) —v ()| +h(s)|u ()= ()| +1(s)|u" () =" (5)]] ds.

then
:8 1
[Tu(@)—Tv@®)|<|lu—vlx (2+ )/ Gi(s)(k(s)+h(s)+1(s))ds.
[1—8nl/ Jo
Similarly, we get
1
7% (0= T"v ()] < llu — vl (1 + L)/ G1 () (k (5) +h () +1 () ds.
1 —B8nl)Jo
and
:3 1
\T//M t)—=T"v (t)| <2lu—vlx (1+|1—ff'77|)/ G (s) (k(s)+h(s) +1(s))ds,
- 0

thanks to (3.2), we get
Tu—Tollx <Cllu—vly,

then, 7 is a contraction, so it has a unique fixed point which is the unique solution of
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Theorem 4 Assume that Bn # 1, f (¢,0,0,0) £ 0 and there exists some nonnega-
tive functions k,l, h,m € L1 [0, 1] such that

Lf (£, v, w)| <k (6) [u] +h () o] +1 @) |w] +m (), Yu, v,w e R, ¢ [0, 1],
(3.3)

1
2(1+ p )/ G1 () (k 5) +h (s) +1 () ds < 1. (34)
11— Bnl/) Jo

Then, the BVP (1.1)—(1.2) has at least one nontrivial solution u* € X.

We need the following Lemma:

Lemma 5 (Leray-Schauder nonlinear alternative [5]) Let F be a Banach space and
Q a bounded open subset of F, 0 € Q. T : Q@ — F is a completely continuous
operator. Then, either it exists x € 02, A > 1 suchthat T (x) = Ax, or it exists a fixed
point x* € Q.

Proof of Theorem 4. Setting

1
F=2(1+L)/ G1(5) (k (5) + h (5) +1 (5)) ds,
[T —Bnl) Jo

_ P :
G—2(1+ |1—,377|)/0 Gi(s)ym(s)ds.

However, to reach these results, we need to show that T is a completely continuous
operator:

1) T continuous. Let (uy),cn be a convergent sequence to u in X. By applying the
upper bounds of the function G and of its first and second derivatives from Lemma
2, we get

T - e = (24 L)

1
/0 Gi () | f (55 (), up (), uf (8)) = f (s, u(s),u' (s),u” (5))|ds,

| T uie (1) = T'u (1)] < (1+ T —ﬁﬁm) X

1
/0 G1(5) | f (s uk (), uf (), () = f (s, () u (5) . u" ()| ds.

and

|T//uk ) —T"u (l‘)| = 2(1+ 1 —ﬁﬁ?ﬂ) )

L()) = f (s, u () u' (), u” ()] ds,
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which imply,

B
| Tur — Tul 52(1+ X
X [1— Bl

1
/0 G () | f (s, (), up (), u () = f (s, u(s),u' (s),u” (5))] ds,

since G (s) < % then

1 B
1 Tur — Tull 5—(1+ )x
X=4 11— Bl

1
/0 |f (s, () up () uf (8)) = f (s u(s),u' (s),u” (s))|ds,

applying Lebesgue’s dominated convergence theorem it yields || Tuy — Tully —
0, when kK — +o00. This implies that 7 is continuous.

2) Let B, ={u € X : |lullx <r} abounded subset. We shall prove that T (B,) is
relatively compact:

(1) T (By) uniformly bounded. For some u € B,, using (3.3) we obtain

1
L) ||M||X/ G1(s) (k (5) + h (5) +1(s))ds
1 — Bnl 0

ﬁ 1
+(2+ N —,377|)/0 Gi(s)m(s)ds.

Similarly, we have

|[Tu ()| < (2 +

1
[ T'u ()] < (1 + ) ||u||x/0 G1(s) (k(s)+h(s)+1(s))ds

B
[1— Bnl

/3 1
+(l+ |1—,377|)/0 Gi(s)ym(s)ds.

And,

1
|T"u ()| < 2(1 + L) ||u||X/ G () (k(s)+h(s)+1(s))ds
[1— Bnl 0

ﬂ 1
+2 (1 + )/ Gi(s)m(s)ds.
0

[1— Bnl

Tulx < Fllulx + G < Fr + G. Thus,
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(i) T (By) equicontinuous. Let#1, t € [0, 1], u € B,
L=max {[f (s,u(s),u' (s),u" ())[,s €0, 11, llullx <7},
therefore, we have:

|Tu (t1) —Tu ()| < Lty — 1]

t t
[zl (3+ 51) (1 + 1) + 51 (t12+t22+t1t2)

2 2 1
+(t1+t2 +tlt2)ﬁ/0 |G*(r/,s)|ds:|

61 — Bnl
Similarly, we have

|T'u (t1) = T'u ()| < L1ta — 11]

1
|:1—t22+t1(t1—t2+3)+%/0 |G*(n,s)|ds].

We also have:
|T"u (1) = T"u (82)| <L |t — 11|

1 B .
|:1+(t1—l2)+5(3l‘2—5l1)+m/0 |G (17,5‘)|de|.

These show that, |Tu (t1) — Tu ()] —> 0, |[T'u(t;) — T'u (t2)| — 0 and
n—n 1n—n
|T” u(t) —T"u (t2)| = 0. Consequently, T (B,) is equicontinuous. From
1—>12

Arzela-Ascoli theorem, we deduce that T is a completely continuous operator.

]

Proof Now, from the continuity of f and the fact that f (¢, 0, 0, 0) # 0, we conclude
that there exists an interval [0, 2] C [0, 1] such that Iglil |f (¢,0,0,0)] >0 and
01=I=0]

then G > O since m (¢) > |f (¢,0,0,0)] > Oon [o1,02] . Let M = G (1 — P,
Q={ueX:|u| <M}andu € 92, A > 1 such that Tu = Au, then with the help
of (3.3) it yields

1
T ()] < lully (2+ L)/ G (5) (k(s) +h (s) +1 () ds
[1—p8nl) Jo
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Moreover,

1
1 T'u ()] < llullx (1 + K —ﬂﬁnl)/o G1 () |(k(s) +h(s)+1(s))lds

:8 1
+(1+ |1—.377|)/0 Gi(s)ym(s)ds.

And,

1
|T"u ()] < 2 llullx (1+ Il—ﬁﬁnl)/o G1(5) (K (s) +h (s) +1 ()] ds

ﬂ 1
+2 (1 + m)/o Gi(s)ym(s)ds.

This shows that
AM = ||Tullxy < Fllullxy + G =FM+G.

From this we get

G
A<F4+_—=F

However, this contradicts A > 1. By applying Lemma 5, we deduce that T has a
fixed point u* € Q and so, the BVP (1.1)-(1.2) has a nontrivial solution u* € X.
Consequently, the proof is complete.

4 Positive Results

In this section, we shall discuss the existence of positive solutions of BVP (1.1)—(1.2).
By making the following additional assumptions:

Qn ft,u,v,w) = a()fi(u,v,w) where a € C([0,1],R4) and f; € C(R x
R2, Ry).
(02) [y Gi(s)a(s)ds > 0.

In fact, we need the lower bounds of functions G and its derivatives.

Lemma6 Lett €11, 12], s €[0,1],0 <11 <10 <1, then
. |
i) G(t,5) = §r1G1 (s),

... 0 5
”) gG(LS) > (11 Gl (S),
iii) G*(t,s) > yG1 (s),
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Proof 1) If s <t, then
G(t,s) > 1s(1 —s)t3+1r3(1 —s)° —l(t—s)3,
~6 6 6
1 1
G (t.5) 2 s (1=5) P+ 2 (1-1) [ﬂ (=524t (1 —5)(t —5) + (1 — s)3] ,
1 3 1 3
G(t,s) > gs(l —s5)t’ > §r1G1 (s).
If t <, it follows that
G (s).

G (t s)—l(l—s)t3> s(1—s)1 >
£ _6 - -

AN =
W —

i) If s <1, then
0 1
—G (1, =—(2t—t2—)
a7 (t,5) 5 s)s
1, 1
=§st (1—s)+5(1—t)[(t—s)+(1—s)t]s.
Thus,
D65 = 121 - 95> 261 ()
— s — —8S)s>1 s).
ar T2 =l
Now in the case t < s, we get

3 1 1
5G(z,s) = 5’2 1—ys) > Ez2(1 —5)s > G (5).

iii) Ift <'s, then
t
G't,)=N—-st=(10—-s)s—>(1—s)s1 221:12G1 (s).
s
In the case s < t, it yields
N 1—1t
G (t,s):(l—t)s:l—(l—s)sz
—s
(I-—m)d—-5)s>2(1—-1)Gi(s),

from here we conclude that G* (¢, s) > y G (s) on [t], T2] x [0, 1]. This com-
pletes the proof. O

Lemma 7 Under the assumptions (Q1)—(Q2) and if 0 < Bn < 1 and if u is a solution
of the BVP (1.1)—(1.2) then u is nonnegative and satisfies

B -1
a2 (14 )] iy
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where ). = min {y, 2, %113} .

Proof Let u be a solution of the BVP (1.1)—(1.2), then

1
u(t)="Tu(r) =/ G (t,5)a(s) fi (u(s), u'(s),u" (5))ds
0

pr’

1
+ 60— G*(n,s)a(s) fi(u(s),u' (s),u” (s))ds.

From the assumptions (Q1)—(Q2) and the positivity of G and G*, it is obvious that u
is nonnegative. Now using Lemma 2 we get

B
1—8n

1
lulloo < (2+ )/0 Gi(s)a(s) fi(u(s),u'(s),u" (s))ds.

On the other hand, for any ¢ € [71, 72] by Lemma 6, we get

-

Therefore, we have:

-1
min u () > lt13 24 P lullo -
te[r),m] -3 1 -8y

Similarly, for any € [t1, 2], we get

5\
min u' (1) > ©} (1+ ) Hu/Hoo

telt), 2] 1—pn
And
min u”(t)>1(1+ P )_1||u”|| :
teft), 1] -2 1—8n ©
Finally we get:

. ’ p :3 -1
i o+ @+ )= a2 (1 72 | iy

This finishes the proof. O
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telr,

=221+ l_ﬂﬂn):l_IHHHX]-

We prove easily that K is a non-empty closed and convex subset of X, then itis a
cone.

K = [ueX, u() =0, tel[0,1], min ](u(t)—i-u/(t)—l—u”(t))

Lemma 8 The operator T is completely continuous and satisfies T (K) C K.

Proof To prove that it suffices to apply Arzela-Ascoli theorem, and following the
proof of Lemma 7, one can show that 7' (K) C K. O

To establish the existence of positive solutions of BVP (1.1)—(1.2), we shall employ
the following Guo—Krasnosel’skii fixed point theorem [8].

Theorem 9 Let E be a Banach spaceind let K C E be acone. We assume that 21, 22
are open subsets of E with 0 € Q1, Q| C 2, andlet A: KN (Q_Q\Ql) — K bea
completely continuous operator. In addition, we suppose either

@) NAull < |lull, u € K N0K, and || Aull = [lull, u € K N3y or
(i) [|Aull = |lull, u € K N 02y, and || Aul] < [lull, u € K N3y

holds. Then A has a fixed point in K N (Q_Q\QI) .
The main result of this section is the following:

Theorem 10 Under the assumptions (Q1) and (Q2) and if 0 < n < 1, fo =0
and foo = 00. Then, the BVP (1.1)—(1.2) has at least one nontrivial positive solution.
Where

B i S1(u, v, w)
(ul+ll+wh—0lu| + [v] + Jw|’
1 (u, v, w)

- = li —_
(lul+v|+wh—oo |u| + [v| + |w|

Jo

Proof We shall prove that the problem BVP (1.1)—(1.2) has at least one positive
solution. For this we use Theorem 9. From Lemma 8 we know that 7 is completely
continuous and that 7 (K N (Q2\821)) C K. Now, since fy = 0, then for any & > 0,
there exists 61 > 0, such that f (u, v, w) < e (lu| + [v| + |w]), for |u|+ |v|+|w| <
81. Let 21 be an open set in X defined by Q2| = {y e X/llyllx < 51}. Then, for any
u e KNoy, it yields:

1
ﬁn)/o G (s)a (s)ds,
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and

1
Tu| < ellulx (1+ l—ﬁﬁn)/o G (s)a (s)ds.

And

1
||T”u||oosze||u||x(1+ P )/ G1(s)a(s)ds.
1—=8n/Jo

—1
If we choose & = [2 (1 + 1_’%) fol Gi(s)a(s) ds] , then it yields

ITullx <llullx, YueKNoQ.

Now, from fo, = 00, we conclude that for any M > 0, there exists H > 0, such that
f1 (u, v, w) > M (Ju| + |v] + |w]) for |u| + |v| + |w| > H. Let

H max[28 2H(l—i— A
' e 1—ﬁn)]’

and denote by Q» the open set 2, = {y € X/ |lylly < Hi}. then Q1 C Q. Let
u € K NaRy; then,

. f ” ﬂ —1
i oo o)z (s 5 ) [

:3 -1
s )]

Now let ¢ € [11, 12], taking into account Lemma 6, we obtain

22 B\ vB "
Tu(t)zM? (1+1—ﬂ'7) (1+2(T,377)) IIMIIX/r Gi(s)a(s)ds.

1

Similarly,

T/u<t>>Mf(1+ g )_1(1+L)nun /rszs)a(s)ds
=M 1= Bn 20—pm) " '

And

13
) it [ 61 a s
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By choosing

[ B \! B v o
M—|:7(1+1_‘6n) (l-l-m)/tl Gi(s)a(s)ds )

where ¢ = min (y, 71) we get:

ITullxy > llullx,Yu € KN0OQ
By the first part of Theorem 9, T" has at least one fixed pointin K N (5_22\91), which is

a nontrivial positive solution of BVP (1.1)—(1.2). This achieves the proof of Theorem
10. O

5 Examples
In order to illustrate our results, we give these examples:

Example 11 We consider the following boundary value problem

" 2.7 3.0
[u +tu+tu +t°u" =0, 0<t<l1, 1

w0 =u"0)=u"(0)=0, u"1)=pu" ).
Weset = %, n= }‘, and f (t,u,v,w) =tu + 12v + 3w. We can choose
k(y=t,h(t)=12,1@t) =1, te][0,1]
k,h,l e L]0, 1] are nonnegative functions, and

lf tx,y,2) — ftu, v, <tlx—ul+12 |y — v+ |z — wl
Sk@®lx—ul+h@®ly—vI+1#) |z —w

with,

B

C=2(1+—1
( T — Bnl

1
)/ Gi(s)(k(s)+h(s)+1(s)ds =0.227 < 1,
0

hence, by Theorem 3, the boundary value problem (J1) has a unique solution in X.

Example 12 We consider the following boundary value problem

u"" 4+ 2tu + t2u’ sint + 2y +sin2t=0, 0<t <1, J2)
u” (1) = pu” (n).

@ Springer
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Weset 8 = %, n= }t. Now if we estimate f as

3
t
|f (¢, u, v, w)| <2t |u| + > |v] + 3 |w| + sin 2¢

k@ lul+h @) +1@) wl+m@),

then, we can choose k (1)=2¢, [(t)=12, h(t)= é, m(t)=sin2¢, t€[0,1]
with

1
2(1+L)/ Gi(s)(k(s)+h(s)+1(s)ds =03579%4 < 1,
1 —8nl) Jo

k, 1, hand m € L'[0, 1] which are nonnegative functions. Hence, by Theorem 4,
the boundary value problem (J2) has at least one nontrivial solution, u* € X.

Example 13 We consider the following boundary value problem

" + 242 + % (u,)Z + % (u,,)Z =0, 0<t<l, J3)
wO = ) =u"©) =0, u(1)=Bu" ).

where 0 < Bn < 1. Knowing that:

1 1
@, u,v,w) =1 (u2 + sz + §w2) =a(t) fi (u,v,w),

a)=1t>eC(0,11,Ry), fi (u,v,w) € C (Ry x RZ, R, ), we get

im f1(u, v, w) =[ 0, if (Ju| + [v| + |w|) = 0,
lu| + v] + |w] 0o, if (Ju] + [v| + [w]) — oo.

So, we have the superlinear case fo = 0 and f, = 00; consequently, by Theorem
10, the BVP (J3) has at least one positive solution.
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